

Technical support: order@acebiolab.com

Phone: 886-3-2870051

Ver.1 Date: 20200825

SARS-CoV Spike S1+S2 ECD-His Recombinant Protein (S577A, Isolate Tor2)

Cat# P0048

Storage at -20 - -80°C for twelve months

Protein Description

The spike (S) glycoprotein of coronaviruses contains protrusions that will only bind to certain receptors on the host cell. Known receptors bind S1 are ACE2, angiotensin-converting enzyme 2; DPP4, dipeptidyl peptidase- 4; APN, aminopeptidase N; CEACAM, carcinoembryonic antigen-related cell adhesion molecule 1; Sia, sialic acid; O-ac Sia, O-acetylated sialic acid. The spike is essential for both host specificity and viral infectivity. The term 'peplomer' is typically used to refer to a grouping of heterologous proteins on the virus surface that function together. The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. It's been reported that SARS-CoV-2 (COVID-19 coronavirus, 2019-nCoV) can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion. The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. The main functions for the Spike protein are summarized as: Mediate receptor binding and membrane fusion; Defines the range of the hosts and specificity of the virus; Main component to bind with the neutralizing antibody; Key target for vaccine design; Can be transmitted between different hosts through gene recombination or mutation of the receptor binding domain (RBD), leading to a higher mortality rate.

Gene Name Synonym

coronavirus s1; coronavirus s2; coronavirus spike; cov spike; ncov RBD; ncov s1; ncov s2; ncov spike; novel coronavirus RBD; novel coronavirus s1; novel coronavirus s2; novel coronavirus spike; RBD; S1; s2; Spike RBD

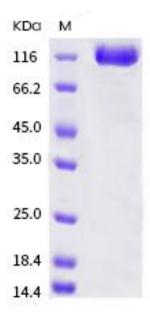
Protein Construction

A DNA sequence encoding the full-lenght ECD of SARS-CoV (isolate: Tor2) spike (NP_828851.1) (Met1-Pro1195) was expressed with a C-terminal polyhistidine tag.

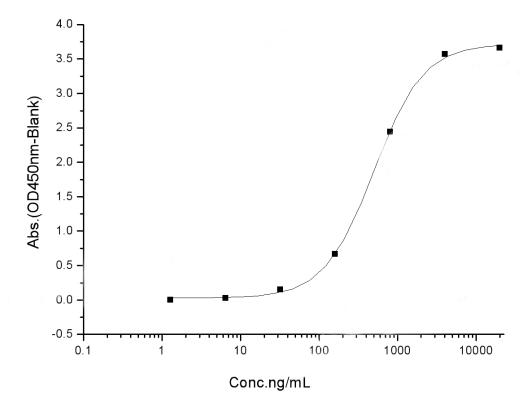
Source

SARS

Expression Host


Baculovirus-Insect Cells

QC Testing


Purity: > 90 % as determined by SDS-PAGE

SDS-PAGE:

Bio Activity: Measured by its binding ability in a functional ELISA.

Immobilized ACE2 Protein, Human, Recombinant (mFc Tag)(10108-H05H) at 2 μ g/mL (100 μ L/well) can bind SARS-CoV Spike S1+S2 ECD-His Recombinant Protein (S577A, Isolate Tor2)(40634-V08B), the EC50 of SARS-CoV Spike S1+S2 ECD-His Recombinant Protein (S577A, Isolate Tor2)(40634-V08B) is 350-700 ng/mL.

Endotoxin: < 1.0 EU per μg protein as determined by the LAL method

Predicted N terminal

Ser14

Molecular Mass

The recombinant SARS-CoV (isolate: Tor2) spike S1+S2 ECD consists of 1193 amino acids and predicts a molecular mass of 132.58 kDa.

Formulation

Lyophilized from sterile 20mM PB, 300mM NaCl, pH 7.0, 10% glycerol

Normally 5 % - 8 % trehalose, mannitol and 0.01% Tween80 are added as protectants before lyophilization. Specific concentrations are included in the hardcopy of COA. Please contact us for any concerns or special requirements.

Usage Guide

Stability & Storage:

Avoid repeated freeze-thaw cycles.

Samples are stable for twelve months from date of receipt at -20° C to -80° C. Store it under sterile conditions at -20° C to -80° C upon receiving. Recommend to aliquot the protein into smaller quantities for optimal storage.

Reconstitution:

Detailed reconstitution instructions are sent along with the products.

References

- 1. Shen S, et al. (2007) Expression, glycosylation, and modification of the spike (S) glycoprotein of SARS CoV. Methods Mol Biol. 379: 127-35.
- 2. Du L, et al. (2009) The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nat Rev Microbiol. 7 (3): 226-36.
- 3. Xiao X, et al. (2004) The SARS-CoV S glycoprotein. Cell Mol Life Sci. 61 (19-20): 2428-30.

PRODUCT USE LIMITATION

These products are intended for research use only.

